Part Number Hot Search : 
MV571 JT32C RU0089F 68HC90 ER1ZZ SAA73 AT150B10 2SC28
Product Description
Full Text Search
 

To Download HA9P2850-5 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 T NT DUC PRO LACEME r at ETE R EP e nt e OL OBS ENDED upport C om/tsc M il.c lS COM nica nters Sheet O RE Data ech r www.i N ur T L o I act o cont -INTERS 888 1(R)
HA-2850
May 2003 FN2844.5
470MHz, Low Power, High Slew Rate Operational Amplifier
The HA-2850 is a wideband, high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with a closed loop gain of 10 or greater. A 340V/s slew rate and a 470MHz gain bandwidth product ensure high performance in video and wideband amplifier designs. Differential gain and phase are a low 0.04% and 0.04 degrees respectively, making the HA-2850 ideal for video applications. A full 10V output swing, high open loop gain, and outstanding AC parameters, make the HA-2850 an excellent choice for high speed Data Acquisition Systems. For military grade product, refer to the HA-2850/883 data sheet.
Features
* Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . 7.5mA * High Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 340V/s * Open Loop Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . 25kV/V * Wide Gain-Bandwidth (AV 10). . . . . . . . . . . . . . 470MHz * Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . 5.4MHz * Low Offset Voltage. . . . . . . . . . . . . . . . . . . . . . . . . 0.6mV * Input Noise Voltage . . . . . . . . . . . . . . . . . . . . 11nV/ Hz * Differential Gain/Phase . . . . . . . . . . 0.04%/0.04 Degrees * Lower Power Enhanced Replacement for AD840 and EL2040
Applications
* Pulse and Video Amplifiers * Wideband Amplifiers
Pinout
HA-2850 (SOIC) TOP VIEW
* High Speed Sample-Hold Circuits * Fast, Precise D/A Converters
NC -IN +IN V-
1 2 3 4
8
NC V+ OUT NC
Part Number Information
PART NUMBER (BRAND) HA9P2850-5 (H28505) TEMP. RANGE (oC) 0 to 75 PACKAGE 8 Ld SOIC PKG. NO. M8.15
+
7 6 5
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright (c) Intersil Americas Inc. 2003. All Rights Reserved All other trademarks mentioned are the property of their respective owners.
HA-2850
Absolute Maximum Ratings
Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . 35V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V
Thermal Information
Thermal Resistance (Typical, Note 1)
JA (oC/W)
Operating Conditions
Temperature Range HA-2850-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 75oC Recommended Supply Voltage Range . . . . . . . . . . . . 6V To 15V
8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . 157 Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . . .175oC Maximum Junction Temperature (Plastic Package, Note 2) . .150oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES: 1. JA is measured with the component mounted on an evaluation PC board in free air. 2. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below 150oC for plastic packages.
Electrical Specifications
VSUPPLY = 15V, RL = 1k , CL 10pF, Unless Otherwise Specified HA-2850-5
PARAMETER INPUT CHARACTERISTICS Offset Voltage (Note 9)
TEST CONDITIONS
TEMP. (oC)
MIN
TYP
MAX
UNITS
25 Full
10 -
0.6 2 20 5 8 1 10 1 11 6
2 6 14.5 20 4 8 -
mV mV V/oC A A A A k pF V nV Hz pA Hz
Average Offset Voltage Drift Bias Current (Note 9)
Full 25 Full
Offset Current
25 Full
Input Resistance Input Capacitance Common Mode Range Input Noise Voltage (Note 9) Input Noise Current (Note 9) TRANSFER CHARACTERISTICS Large Signal Voltage Gain Note 4 f = 1kHz, RSOURCE = 0 f = 1kHz, RSOURCE = 10k
25 25 Full 25 25
25 Full
20 15 75 10 -
25 20 80 470
-
kV/V kV/V dB V/V MHz
Common-Mode Rejection Ratio (Note 9) Minimum Stable Gain Gain Bandwidth Product (Note 9) OUTPUT CHARACTERISTICS Output Voltage Swing (Note 9) Output Current (Note 9) Output Resistance Full Power Bandwidth (Note 5) Differential Gain Differential Phase Harmonic Distortion (Note 9)
VCM = 10V
Full 25
VO = 90mV, AV = 100
25
Note 4 Note 4
Full Full 25
10 10 4.8 -
11 20 30 5.4 0.04 0.04 -74
-
V mA MHz % Degrees dBc
Note 4 AV = +10, Note 3 AV = +10, Note 3 AV = +10, VO = 2VP-P, f = 1MHz
25 25 25 25
2
HA-2850
Electrical Specifications
PARAMETER TRANSIENT RESPONSE (Note 6) Rise Time Overshoot Slew Rate (Notes 8, 9) Settling Time POWER REQUIREMENTS Supply Current (Note 9) Power Supply Rejection Ratio (Note 9) NOTES: 3. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS. 4. RL = 1k, VO = 10V, 0V to 10V for slew rate. Slew Rate 5. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = -------------------------- ; V PEAK = 10V . 2V PEAK 6. Refer to Test Circuit section of data sheet. 7. VSUPPLY = 10V to 20V. 8. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation. 9. See "Typical Performance Curves" for more information. Note 7 Full Full 75 7.5 90 8.0 mA dB Note 4 10V Step to 0.1% 25 25 25 25 300 5 25 340 200 ns % V/s ns VSUPPLY = 15V, RL = 1k , CL 10pF, Unless Otherwise Specified (Continued) HA-2850-5 TEST CONDITIONS TEMP. (oC) MIN TYP MAX UNITS
Test Circuits and Waveforms
IN +
-
OUT 900
NOTES: 10. VS = 15V. 11. AV = +10. 12. CL < 10pF.
100
TEST CIRCUIT
INPUT INPUT
OUTPUT
OUTPUT
Input = 1V/Div. Output = 5V/Div. 50ns/Div.
Input = 10mV/Div. Output = 100mV/Div. 50ns/Div.
LARGE SIGNAL RESPONSE
SMALL SIGNAL RESPONSE
3
HA-2850 Test Circuits and Waveforms
V+ 0.001F
(Continued)
NOTES: 13. AV = -10.
200 INPUT 1F
14. Load Capacitance should be less than 10pF.
OUTPUT
+ 0.001F
15. It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1%. 16. SETTLING POINT (Summing Node) capacitance should be less than 10pF. For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.
PROBE MONITOR
500 V-
1F 2k
SETTLING POINT
5k
SETTLING TIME TEST CIRCUIT
Typical Performance Curves
100 80 GAIN (dB) 60 40 20 0 AVCL = 10 AVCL = 1000 AVCL = 100 OPEN LOOP
TA = 25oC, VSUPPLY = 15V, RL = 1k , CL < 10pF, Unless Otherwise Specified
475 GAIN BANDWIDTH PRODUCT (MHz)
450
PHASE (DEGREES)
AVCL= 1000 AVCL= 100 AVCL = 10 0 OPEN LOOP 90 180
425
400 5 6 7 8 9 10 11 12 13 14 15 SUPPLY VOLTAGE (V)
1K
10K
100K 1M 10M FREQUENCY (Hz)
100M 500M
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS GAINS
FIGURE 2. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE
4
HA-2850 Typical Performance Curves
600 550 GAIN BANDWIDTH PRODUCT (MHz) 500 70 CMRR (dB) -40 -20 0 20 40 60 80 100 120 140 450 400 350 300 250 200 -60 60 50 40 30 20 100
TA = 25oC, VSUPPLY = 15V, RL = 1k , CL < 10pF, Unless Otherwise Specified (Continued)
90 80
1K
10K
100K
1M
10M
TEMPERATURE (oC)
FREQUENCY (Hz)
FIGURE 3. GAIN BANDWIDTH PRODUCT vs TEMPERATURE
FIGURE 4. CMRR vs FREQUENCY
110 100 NOISE VOLTAGE (nV/Hz) 90 80 PSRR (dB) 70 60 50 40 30 20 10 0 100 1K 10K 100K FREQUENCY (Hz) 1M 10M PSRR 60 50 40 30 20 10 0 10 100 1K FREQUENCY (Hz) 10K NOISE CURRENT NOISE VOLTAGE 30 20 10 0 100K 60 50 40 NOISE CURRENT (pA/Hz) 15
FIGURE 5. PSRR vs FREQUENCY
FIGURE 6. INPUT NOISE vs FREQUENCY
350
350
325 SLEW RATE (V/s) SLEW RATE (V/s) -40 -20 0 20 40 60 80 100 120 140
325
300
300
275
275
250
250
225 -60
225 5 6 7 8 9 10 11 12 13 14 TEMPERATURE (oC) SUPPLY VOLTAGE (V)
FIGURE 7. SLEW RATE vs TEMPERATURE
FIGURE 8. SLEW RATE vs SUPPLY VOLTAGE
5
HA-2850 Typical Performance Curves
TA = 25oC, VSUPPLY = 15V, RL = 1k , CL < 10pF, Unless Otherwise Specified (Continued)
6.5 3.5 INPUT OFFSET VOLTAGE (mV) INPUT BIAS CURRENT (A) SUPPLY CURRENT (mA) 6.0 2.5 5.5 BIAS CURRENT 5.0 0.5 4.5 OFFSET VOLTAGE -0.5 4.0 -60 -40 -20 0 20 40 60 80 100 120 140 1.5
8.0 7.5 7.0 6.5 6.0 5.5 5.0 125oC 25oC -55oC
5
6
7
8
TEMPERATURE (oC)
9 10 11 12 SUPPLY VOLTAGE (V)
13
14
15
FIGURE 9. INPUT OFFSET VOLTAGE AND INPUT BIAS CURRENT vs TEMPERATURE
FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE
13
15V, 1k NEGATIVE OUTPUT SWING (V)
-3 8V, 75 -5 8V, 1k -7 15V, 75 -9 15V, 150 -11 15V, 1k 140 -13 -60 -40 -20 0 20 40 60 80 100 120 140 TEMPERATURE (oC) 8V, 150
POSITIVE OUTPUT SWING (V)
11 15V, 150 9 15V, 75 7 8V, 1k 5 8V, 150 8V, 75 3 -60 -40 -20 0 20 40 60 80 100 120
TEMPERATURE (oC)
FIGURE 11. POSITIVE OUTPUT SWING vs TEMPERATURE
FIGURE 12. NEGATIVE OUTPUT SWING vs TEMPERATURE
6
HA-2850 Typical Performance Curves
30 OUTPUT VOLTAGE SWING (VP-P) 25 20 15 10 5 -80 0 -90 100K 1M FREQUENCY (Hz) VO = 0.5VP-P VO = 1VP-P 10M THD (dBc) VSUPPLY = 15V
TA = 25oC, VSUPPLY = 15V, RL = 1k , CL < 10pF, Unless Otherwise Specified (Continued)
-30 -40 -50 VSUPPLY = 8V -60 -70 VO = 10VP-P VO = 2VP-P
1K
10K
100K 1M FREQUENCY (Hz)
10M
100M
FIGURE 13. MAXIMUM UNDISTORTED OUTPUT SWING vs FREQUENCY
FIGURE 14. TOTAL HARMONIC DISTORTION vs FREQUENCY
-30 3RD INTERMOD PRODUCT (dBc) -40 VO = 5VP-P -50 -60 -70 -80 -90 500K VO = 0.25VP-P VO = 0.5VP-P 1M FREQUENCY (Hz) 10M VO = 2VP-P VO = 1VP-P
FIGURE 15. INTERMODULATION DISTORTION vs FREQUENCY (TWO TONE)
7
HA-2850 Die Characteristics
DIE DIMENSIONS: 65 mils x 52 mils x 19 mils 1650m x 1310m x 483m METALLIZATION: Type: Aluminum, 1% Copper Thickness: 16kA 2kA SUBSTRATE POTENTIAL VTRANSISTOR COUNT: 34 PROCESS: High Frequency Bipolar Dielectric Isolation PASSIVATION: Type: Nitride over Silox Silox Thickness: 12kA 2kA Nitride Thickness: 3.5kA 1kA
Metallization Mask Layout
HA-2850
V+
OUT
-IN
+IN
V-
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com 8


▲Up To Search▲   

 
Price & Availability of HA9P2850-5

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X